Differential expression and regulation of progesterone receptor isoforms in rat and mouse pituitary cells and LbetaT2 gonadotropes.
نویسندگان
چکیده
Manipulation of endogenous progesterone receptor (PR) does not produce equivalent physiological effects in mouse and rat pituitary cells. To test whether this may be due in part to difference in PR isoform expression, we examined hormonally regulated pituitary PR-A and PR-B mRNA levels using quantitative real-time PCR. The LbetaT2 mouse gonadotrope line or pituitary cells from adult, ovariectomized rats or mice were cultured with or without 0.2 nM 17beta-estradiol (E(2)) for 3 days. PR-A was the predominant form expressed for all groups. For mouse cells, E(2) led to an increase in both isoforms without a change in the A:B ratio; for rat cells, the PR-B response to E(2) was more robust resulting in a decrease in the A:B ratio. Exposure of E(2)-treated pituitary cells to 200 nM progesterone for 6 h decreased both PR-A and PR-B levels in rat cells, but had no effect on PR isoform expression in mouse cells even when exposure was extended to 12 h. The low level of PR expression found in LbetaT2 gonadotropes was unaffected by E(2), alone or with progesterone. The weak PR expression and lack of responsiveness of LbetaT2 cells cannot be explained by a male phenotype as was shown by the more than tenfold higher PR mRNA level in primary cultures of male mouse pituitary cells, which responded to E(2) stimulation with a proportional increase in PR isoforms similar to female cells. Functionally, E(2)-stimulated changes in PR mRNA isoform ratios in rat, mouse or LbetaT2 cells correlated with the degree of progesterone augmentation of GnRH-stimulated LH secretion in these models. These results are consistent with the hypothesis that robust GnRH priming and progesterone augmentation of LH secretion in the rat compared to these events in the mouse are a consequence, in part, of differences in the E(2)-modulated ratio of PR isoforms.
منابع مشابه
Differential regulation of follicle stimulating hormone by activin A and TGFB1 in murine gonadotropes
BACKGROUND Activins stimulate the synthesis of follicle stimulating hormone (FSH) in pituitary gonadotropes, at least in part, by inducing transcription of its beta subunit (Fshb). Evidence from several laboratories studying transformed murine LbetaT2 gonadotropes indicates that activins signal through Smad-dependent and/or Smad-independent pathways, similar to those used by transforming growth...
متن کاملDifferential Expression and Regulation of Estrogen Receptors (ERs) in Rat Pituitary and Cell Lines: Estrogen Decreases ERα Protein and Estrogen Responsiveness.
Estrogen (E) regulates the synthesis and secretion of several pituitary hormones during the reproductive cycle in a cell- and promoter-specific manner. One mechanism underlying cell specificity is the differential expression of estrogen receptor (ER) isoforms. We used in vivo and in vitro rodent pituitary cell models to examine the expression and regulation of ERalpha, ERbeta, and the pituitary...
متن کاملAndrogen responsiveness of the pituitary gonadotrope cell line LbetaT2.
Androgens have a profound effect on the hypothalamic-pituitary axis by reducing the synthesis and release of the pituitary gonadotropin LH. The effect on LH is partly a consequence of a direct, steroid-dependent action on pituitary function. Although androgen action has been well studied in vivo, in vitro cell models of androgen action on pituitary gonadotropes have been scarce. Recently, an LH...
متن کاملSteroid regulation of progesterone receptor expression in cultured rat gonadotropes.
During the preovulatory period, the pituitary action of progesterone is biphasic, moving from a severalfold augmentation of the gonadotropin release action of GnRH to a suppression of GnRH efficacy, which occurs in rats over a period of about 12 h, but the extent to which these biphasic effects are dependent on alterations in progesterone receptor (PR) expression is not known. To address this, ...
متن کاملAndrogen regulates follicle-stimulating hormone beta gene expression in an activin-dependent manner in immortalized gonadotropes.
Little is known about the molecular mechanisms of androgen regulation of the FSHbeta gene; however, studies suggest that it consists of a complex feedback loop that involves multiple mechanisms acting at both the level of the hypothalamus and the pituitary. In the present study, we address androgen regulation of the FSHbeta gene in immortalized gonadotrope cells and investigate the roles of act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of endocrinology
دوره 190 3 شماره
صفحات -
تاریخ انتشار 2006